ZKUŠENOSTI Z REALIZACE TUNELOVÝCH STAVEB V SEVERSÝCH ZEMÍCH
EXPERIENCE FROM TUNNEL STRUCTURES CARRIED OUT IN NORDIC COUNTRIES

JIRÍ MOSLER, VÁCLAV PAVLOVSKÝ

ABSTRAKT

ABSTRACT

The objective of the paper is to summarise information and knowledge obtained during the period of the activities of Metrostav s. s. in Scandinavian countries. The company has been active in the north of Europe continually since 2006 and during this period its employees have gathered lots of invaluable experience, which they have regularly shared with Tunnel journal readers. The paper content builds on papers dealing with the description of completed structures and related topics previously published in Tunnel journal issues No. 2/2007, 3/2008, 3/2009, 3/2011, 1/2013 and 2/2014. The intention of the paper is, instead of repeating the already published detailed technical information, to chronologically arrange and recapitulate the gathered experience with a detached view possible thanks to the time elapsed from the completion of a significant part of Metrostav’s Nordic projects and to remind the reader of the fact that Czech construction companies today have to win a substantial part of their turnover within the framework of foreign contracts.

ÚVOD

Dokončování velkých tunelových projektů v ČR (např. tunely Panenská a Libouchech, Nové spojení v Praze, metro IV.C atd.) a výhled útulnu soutěži s tunely při síťovém konkurenčním tlaku na stavebním trhu v ČR a na Slovensku společně s potřebou uplatnění svých tunelářských kapacit přiměly Metrostav po roce 2004 k zahájení intenzivní marketingové a obchodní činnosti se zaměřením na tunelové stavby v zahraničí. Výstavbu podzemních projektů je v rámci a. s. Metrostav pověřena Divize 5. Průlomovým rokem se stal rok 2006, kdy Metrostav úspěšně vysoutihl svůj první skandinávský silniční projekt Heðinsfjarðargöng na Islandu a učinil tak první, velmi důležitý krok při svém tažení na sever (obr. 1).

REKAPITULACE REALIZOVANÝCH PROJEKTŮ

Island 2006

Výstavbu prvního islandského projektu s tunely Síglufjörður a Ólafsfjörður (obr. 2) v celkové délce 11 025 m realizoval Metrostav ve smluzení s místní firmou Háfell, jejíž hlavní přínos spočíval kromě znalosti místních poměrů především v jazykové vybavenosti, neboť veškerá komunikace byla investorem nařízena v islandštině. Při výstavbě obou tunelů museli raziči a technici Metrostavu překonat řadu překážek a obtíží jak v souvislosti se zavedením metody DRILL&BLAST uplatňované při ražbě skandinávských tunelů, tak kvůli složitým přírodním, geologickým a hydrogeologickým poměrům. Na pozici vedoucího projektu působili

INTRODUCTION

The process of completing large tunnel construction projects in the Czech Republic (e.g. the Panenská and Libouchech tunnels, the New link in Prague project, the metro line extension IV.C etc.) and the future prospects of checks on competitions comprising tunnels during the time of increasing competition on the construction market in the Czech and Slovak Republics, together with the need for the application of production capacities, forced Metrostav a.s. after 2004 to start intense marketing and commercial activities focused on tunnel construction projects abroad. Metrostav has charged its Division 5 with the task to carry out underground construction projects. The breakthrough happened in 2006, when Metrostav a. s. succeeded in the competition and won its first Scandinavian road project, the Heðinsfjarðargöng in Iceland, taking thus the first, very important, step of its campaign toward the north (see Fig. 1).

RECAPITUALTION OF COMPLETED PROJECTS

Iceland 2006

The construction of the its first project in Iceland comprising the Síglufjörður and Ólafsfjörður tunnels (see Fig. 2) at the total length of 11.025m was carried out by Metrostav in association with a local contractor, Háfell, the main contribution of which lied, apart from the knowledge of local conditions, in language skills, since all communications were ordered by the project owner to be in Icelandic. During the construction of both tunnels, Metrostav’s miners and technicians had to overcome many obstacles and difficulties associated
with the introduction of the DRILL & BLAST method, which was new for them and which was applied to the excavation for Scandinavian tunnels, and with complex natural, geological and hydrogeological conditions. The position of the project manager was successively held by Ing. David Cyroň, Ing. Petr Živnůstka and Ing. Ermín Stehlík; the construction finals were secured by Ing. Aleš Richter.

As an example of the action of the harsh local climatic conditions, it is possible to mention the commencement of the construction work in the autumn of 2006, when a strong gust of wind took the just finished shed for the maintenance of equipment several tens of metres away and completely demolished it. Strong, often gusty and icy wind accompanied Metrostav’s tunnellers throughout the period of their work in Iceland. In winter months it was, in addition, necessary to cope with masses of snow, when not only main and access roads, but also tunnel portals themselves, were often covered with an up to several metres thick layer of snow.

A crucial test of the tunnellers was represented by complex hydrogeological conditions, when the excavation had to be repeatedly interrupted because of the necessity to cope with the severe ingress of pressurised groundwater to the area of the tunnel heading. Such conditions had never before been encountered in Iceland and were not assumed in the tender conditions. Taking into consideration the combination of the volume, pressure and very low temperature of groundwater, the conditions, which had been encountered till that time only by several projects in the world, were very complicated.

It was not only the nature that placed obstacles in the way of the workers. The company had to cope with the consequences of a dramatic economic development in Iceland, which underwent the largest banking and economic crisis in the modern history with a drastic impact on the devaluation of Icelandic currency. Despite the above-mentioned difficulties during the implementation of this pilot project, the construction was successfully completed and handed over to the governmental state owner, Vegagerðinn (an analogy to the Czech Directorate of Roads and Motorways) in September 2010.

Finland 2010

Despite the above-mentioned problems encountered during the implementation of the first project within the reach of the polar circle, Metrostav’s management decided to continue with commercial activities in Scandinavia, thus to make a profit
Skandinávie a zúčtovat tak nelehce nabyté zkušenosti. Dalším cílem, na který byl zaměřen marketingový hledáček, se stalo Finsko, konkrétně prodloužení metra z Helsinky do Espoo. Opět především jak z důvodu překonání jazykové bariéry finštiny, tak z důvodů obsáhnutí znalostí místních poměrů a sdílení rizik bylo nutno nalézt místního partnera pro spoľupráci. Místní firmy působící v oboru projevovaly zájem spíše o dodání razičů než o rovnocennou partnerskou spolupráci, a tak volba nakonec padla na společnost Destia, která v segmentu podzemních staveb dosud působila pouze omezeně.

Vzhledem k posunu původně předpokládaného termínu vyspání soutěže Länsimetro – západního metra obě firmy absolvovaly nejrve ostřé zahájovací kolo při účasti na tunely železničního spojení na helsinské letišti – projekt Keharata.

V roce 2010 se dostavil první obchodní úspěch v podobě získání zakázky na výstavbu přístupových tunelů Länsimetro. Trojice tunelu Koivusaari, Myllykallio a Lauttasaari o celkové délce 1249 m se nacházela na ostrově Lauttasaari v oblasti rezidenční a administrativní zástavby a současně v těsné

from the not easily gained experience. The next aim the marketing viewfinder was focused on was Finland, concretely the extension of metro from Helsinki to Espoo. It was again necessary for the reason of overcoming the language barrier of Finnish and comprehending local conditions and sharing of risks to find a local partner for collaboration. Local firms operating in the industrial branch were interested in hiring Metrostav’s miners rather than equal partnership. For that reason the choice fell on Destia, a company which had operated in the segment of underground construction only to a limited extent.

With respect to a shift in the date of the invitation to tender for the Länsimetro West, the two companies underwent without preparation a warm-up round competition for tunnels on a rail link to Helsinki airport – the Keharata project.

In 2010, the first commercial success came in the form of winning a contract for the construction of access tunnels for Länsimetro. Three tunnels, Koivusaari, Myllykallio and Lauttasaari, with the aggregate length of 1,249 m, were located on Lauttasaari island, within a residential and administration development and, at the same time, in the close vicinity of the Finnish Bay. During the realisation itself, which commenced in September 2010, the tunnellers of Division 5 encountered complications significantly differing from the contract in Iceland. Driving tunnels in an urban area through hard rock, mostly granite, under a shallow overburden, in combination with demanding requirements of the project owner, was a hard nut to crack. In particular the alignment of the Lauttasaari access tunnel running under a hospital with the cover of only several metres caused wrinkles on the foreheads of the tunnellers. The tunnels were handed over to the project owner in December 2011.

Finland 2011

It was already on the turn of 2010 – 2011 that Metrostav, again in collaboration with the local company Destia, succeeded in the competition for the construction of a pair of Länsimetro running tunnels - the LU6E Karhusaari section – with the aggregate length of excavation of 2,613 m. The excavation passed through similar geology as that in the case of the access tunnels, but with partial differences. The alignment of the track section ran in its eastern part in the immediate vicinity of the sea and, at the same time, under the sea groundwater table. Massive injecting of microcement grout
blízkosti může Finského zálivu. Při vlastní realizaci, která byla zahájena v září 2010, se tuneláři Divize 5 v tomto případě setkali s komplikacemi významně odlišnými od zakázky na Islandu. Ražba tunelů v intravilánu v pevných horninách, předvázně žulách, s nízkým nadložím byla v kombinaci s náročnými požadavky investora opravdovým oříškem. Zejména trasování přístupového tunelu Lauttasaari, vedeného pod nemocnici s nadložím pohybově několika metrů, působilo tunelářům v první třetině 2011.

Finsko 2011

Součástí projektu byly také ražby trojice velkoplošných jednolodních technologických kaveren o profilu až 383 m² (obr. 3) spolu s raženými větracími šachtami o hloubkách až 35 m. Stavba byla zdánlivě dokončena a předána v září 2013.

Finsko 2012

Úspěšná spolupráce s místním partnerem Destia vyústila v realizaci ražeb pod vznikajícím rezidencií a obchodním centrem Kalasatama na rozvojové ploše Helsinek. Součástí developerského projektu byly dva tunely, každý sloužící jinému účelu. První, servisní tunel dlouhý 220 m, byl využit pro přeložku centrálního vytápění města Helsinek. Součástí projektu bylo napojení do technického tunele dlouhého přes 20 km. Specifikem tohoto projektu bylo složité napojení nového tunele do stávajícího technologického kolektoru. V místě proražky byly na přílehlé štěně budoucího propojení vedeny dvě vysokotlaké ropu ø 600 mm dálkového vytápění. Vzhledem k zimnímu období nebyla možná ani krátkodobá odstávka systému. Pro minimalizaci rizika poškození potrubí ahead of the excavation face was occasionally carried out. This work significantly affected the advance rates. Local dripping of water through the final lining was subsequently removed by additional grouting using polyurethane resins. The volumes of the grouting operations many times exceeded all expectations. Conversely, the underground excavation in the north-western section led under the foundations of buildings owned by Nokia, where extraordinarily high requirements for adhering to seismic limits for blasting operations were placed with respect to the sensible technological equipment in the basement spaces of the complex.

Three large-profile single-vault technological caverns with the profiles of up to 383m², together with mined ventilation shafts up to 35m deep, were also parts of the project (see Fig. 3). The construction was successfully completed and handed over to the client in September 2013.

Finland 2012

The successful collaboration with the local firm, Destia, led to the realisation of the excavation under the Kalasatama residential and commercial centre, which was being developed in the Helsinki development area. Two tunnels serving to another purpose were parts of the development project. The first one, a 220m long service tunnel, was used for the diversion of central heating of the city of Helsinki. Part of the project was the connection into an over 20km long utility tunnel. A specific...
bylo posledních 2,5 m tunelu rozeřezáno proresezávacím lanem na jednotlivé bloky (obr. 4), které byly poté vytáženy.

Druhý tunel délky 214 m plnil pouze dočasnou funkci a sloužil k vybudování pilířů přesouváního železničního mostu metra. Po celé délce tunelu byly vyraženy šachty o hloubce 20 m, ve kterých dodavatel mostní konstrukce založil nové mostní pilíře. Veškeré práce probíhaly v těsném sousedství a za plného provozu metra. Oba tunely byly předány v červenci 2012.

Všechny výše uvedené stavby ve Finsku byly řízeny Ing. Václavem Pavlovským.

Island 2013

Po dokončení prvního projektu na Islandu se zde Metrostav aktivně účastnil také dalších vypracovávaných soutěží, vzhledem ke sporům s firmou Háfell bylo rozhodnuto vybrat nového místního partnera, kterým se stala společnost Suðurverk. Úspěch se dostavil na jaře 2013 v soutěži na nejdelší islandský silniční tunel Nordfjórður délky 7560 m. Tento projekt navazoval na dokončení řady tratí takových tunelů Lánsimeta v Helsinkách, řízením stavby byl pověřen vedoucí projektu Ing. Aleš Gothard, který se již účastnil předchozích projektů na Islandu a ve Finsku.

Tunel se razí z portálů Eskifjörður a Fannaradalur převážně v bazalttech, ražba tunelu je komplikována četným výskytům nesouzředných tufovéch vrstev o mocnosti až 9 m (obr. 5). Orientace vrstev je takřka identická se sklonovými poměry tunelu a provází tak různé pokužení mnoho desítek metrů (obr. 6). Nejproblematické je výskyt tufové strukturálního provedení tunelu, kde dochází k nahladování radiálně orientovaných tafovitých vrstev, které mají společně se sklonovými poměry (obr. 7) tvorit zcela klíčový článek v článku, v němž je vývoj tunelu popsán. Norsko 2014

Z důvodu dočasného poklesu vypisování velkých stavebních zakázek ve Finsku po dokončení Lánsimeta byla v roce 2014 zaměřena obchodní aktivita Metrostavu na další severní švédskou zemí s významným potenciálem realizace tunelů a podzemních staveb – Norsko. Při informaci měla týkající se potřeby územních plánů, které se vztahují k tvorbě cest, tunelů a jiných podzemních staveb. Norská společnost byla pověřena realizací projektu Nordfjórður tunel.

Fig. 7 Horninový blok ze skalního řízení

Norway 2014

Because of a temporary drop in the numbers of public calls for bids issued in Finland after the completion of the Lânsimetro project, the commercial activities of Metrostav in 2014 was focused on another Norwegian country with a significant potential for the realisation of tunnels – Norway. Despite information concerning significant difficulties encountered by foreign firms striving for penetrating this market, and the number of already awarded contracts, Metrostav adopted the decision to enter the Norwegian market.

The targeted commercial activity yielded results in the form of winning a contract for the construction of a diversion of road No. 337 near the town of Veiðisvønd on the western coast of Norway. Metrostav submitted the tender for this project, the part of which is even a 1,565 m long twin-tube mined road tunnel, jointly with a local firm, Havnen Anlegg.

feature of this project lied in the complicated connection of the new tunnel to the existing utility tunnel. Two high-pressure district heating pipelines 600mm in diameter were found in the location of the future breakthrough, on the adjacent wall of the utility tunnel. Taking into consideration the winter season, no even short-term, decommissioning was possible. With the objective to minimise the risk of damaging the pipeline, the last 25m long section of the tunnel was cut into individual blocks with a diamond wire saw (see Fig. 4). The blocks were subsequently hoisted to the surface.

The other, 214m long, tunnel fulfilled an only temporary function and served only to build piers of the metro railway bridge to be moved. Shafts 20m deep were sunk throughout the tunnel length. The contractor for the bridge structure founded new piers in the shafts. All working operations were carried out in the close vicinity of the fully operational metro. Both tunnels were handed over to the client in July 2012.

All of the above-mentioned structures in Finland were managed by Ing. Václav Pavlovský.

Iceland 2013

After completing the first contract in Iceland, Metrostav actively participated in other tenders called in Iceland. With respect to disputes with Háfell, the decision was made that a new local partner would be found. Suðurverk company became the partner. Success came in the spring of 2013, in the competition for the longest road tunnel in Iceland, the 7,560m long Nordfjórður tunnel. This project followed after the completion of the excavation of the Lânsimetro running tunnels in Helsinki. The task to manage the construction was entrusted to Ing. Aleš Gothard, who had already participated in the previous projects in Iceland and Finland.

The tunnel is being driven from the Eskifjörður and Fannaradalur portals, mostly through basalt. The tunnel excavation is complicated by numerous occurrences of incoherent up to 9m thick tuff layers (see Fig. 5). The orientation of layers is nearly identical with the tunnel inclination conditions. It therefore accompanies the miners for many tens of metres (see Fig. 6). The occurrence of tuffs in the top heading, causing random overbreaks, is the most problematic thing. The frequency and, in particular, the thickness of individual failures even led to the necessity of increasing the strength of the lining by means of BRETEx-type lattice girders. The last several hundreds of metres of the excavation remain to be completed at the moment of writing this paper.
<table>
<thead>
<tr>
<th>Projekt</th>
<th>Účel</th>
<th>Realizace</th>
<th>Délka [m]</th>
<th>Objem ražeb [m³]</th>
<th>Běžný profil [m²]</th>
<th>Max. profil [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hřídeľský ochorený, island – tunel Ólafsfjörður</td>
<td>silniční</td>
<td>05/2006 – 09/2010</td>
<td>6 925</td>
<td>380 000</td>
<td>52,8</td>
<td>75,3</td>
</tr>
<tr>
<td>Hřídeľský ochorený, Iceland – Ólafsfjörður tunnel</td>
<td>silniční</td>
<td>05/2006 – 09/2010</td>
<td>6,925</td>
<td>380,000</td>
<td>52,8</td>
<td>75,3</td>
</tr>
<tr>
<td>Hřídeľský ochorený, island – tunel Sigulfjörður</td>
<td>silniční</td>
<td>05/2006 – 09/2010</td>
<td>3 650</td>
<td>200 000</td>
<td>52,8</td>
<td>75,3</td>
</tr>
<tr>
<td>Hřídeľský ochorený, Iceland – Sigulfjörður tunnel</td>
<td>silniční</td>
<td>05/2006 – 09/2010</td>
<td>3,650</td>
<td>200,000</td>
<td>52,8</td>
<td>75,3</td>
</tr>
<tr>
<td>Přístupové tunely metra Finsko – Myllykallio</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>238</td>
<td>11 000</td>
<td>33,7</td>
<td>46,2</td>
</tr>
<tr>
<td>Access tunnels for metro in Finland – Myllykallio tunnel</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>238</td>
<td>11,000</td>
<td>33,7</td>
<td>46,2</td>
</tr>
<tr>
<td>Přístupové tunely metra Finsko – Kolvusaari</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>560</td>
<td>23 000</td>
<td>31,5</td>
<td>58,0</td>
</tr>
<tr>
<td>Access tunnels for metro in Finland – Kolvusaari tunnel</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>560</td>
<td>23,000</td>
<td>31,5</td>
<td>58,0</td>
</tr>
<tr>
<td>Přístupové tunely metra Finsko – Lauttasaari</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>406</td>
<td>46 000</td>
<td>31,0</td>
<td>54,0</td>
</tr>
<tr>
<td>Access tunnels for metro in Finland – Lauttasaari tunnel</td>
<td>metro</td>
<td>05/2010 – 12/2011</td>
<td>406</td>
<td>46,000</td>
<td>31,0</td>
<td>54,0</td>
</tr>
<tr>
<td>Trafové tunely metra Finsko – Karhusaari</td>
<td>metro</td>
<td>05/2011 – 09/2013</td>
<td>2 613</td>
<td>140 000</td>
<td>36,2 – 42,1</td>
<td>383,0</td>
</tr>
<tr>
<td>Metro running tunnels in Finland – Karhusaari tunnels</td>
<td>metro</td>
<td>05/2011 – 09/2013</td>
<td>2,613</td>
<td>140,000</td>
<td>36,2 – 42,1</td>
<td>383,0</td>
</tr>
<tr>
<td>Kalasatama, Finsko tunely č. 1 a 2</td>
<td>technologický</td>
<td>02/2012 – 07/2012</td>
<td>434</td>
<td>18 400</td>
<td>31,6</td>
<td>46,6</td>
</tr>
<tr>
<td>Kalasatama, Finland, tunnels No. 1 and 2</td>
<td>technology</td>
<td>02/2012 – 07/2012</td>
<td>434</td>
<td>18,400</td>
<td>31,6</td>
<td>46,6</td>
</tr>
<tr>
<td>Norðfjardarárhönd, Island</td>
<td>silniční</td>
<td>08/2013 – doposud</td>
<td>7 908</td>
<td>434 000</td>
<td>54,7</td>
<td>77,3</td>
</tr>
<tr>
<td>Norðfjardarárhönd, Iceland</td>
<td>road</td>
<td>08/2013 – Till now</td>
<td>7,908</td>
<td>434,000</td>
<td>54,7</td>
<td>77,3</td>
</tr>
<tr>
<td>Veitastrond, Norsko</td>
<td>silniční</td>
<td>05/2014 – doposud</td>
<td>1 565</td>
<td>108 000</td>
<td>42,5</td>
<td>66,1</td>
</tr>
<tr>
<td>Veitastrond, Norway</td>
<td>road</td>
<td>05/2014 – Till now</td>
<td>1,565</td>
<td>108,000</td>
<td>42,5</td>
<td>66,1</td>
</tr>
</tbody>
</table>

Čilná obchodní činnost přinesla výsledky získání zakázky na realizaci přeložky silnice č. 337 u města Veitastrond na západním pobřeží Norska. Nabídka na tento projekt, jehož součástí je také dvouproudový ražený silniční tunel v délce 1565 m, podal Metrostav opět společně s místní firmou Havnen Anlegg.

Mezi specifika této stavby patří mj. přerušení prací po dobu zimní odstávky silnice z důvodu lavinového nebezpečí v době od 1. prosince do 31. května. O reálnosti této hrozby se měli raziči možnost přesvědčit ještě před zahájením zimní prestavby, kdy došlo k sesuvu v bezprostřední blízkosti jižního portálu. Událost se naštěstí obešla bez jakéhokoliv obětí. Kromě sněžných lavin došlo i k uvolnění kamenného...

SPECIFICKÁ METODY DRILL&BLAST V PRAXI

Rázeby všech výše popsaných projektů byly realizovány metodou DRILL&BLAST, která využívá v maximální míře samonošností horninového masivu. Svůj uplatnění nachází především ve velmi pevných horninách severních částí a je u našich odborné veřejnosti dnes již velmi dobře známá. Vyznačuje se mj. značnou délku jednotlivých záběrů přesahující ve vhodných podmínkách 5 m s použitím trhacích prací. Ostění je tvořeno kombinací typové různě svorníkové výstuze a stříkačkých betonů. V hojně mísí je aplikována metoda předstihových systémových injekcí.

Vzhledem ke skutečnosti, že převážná většina prvků této metody je společná či podobná s NRTM, nepředstavovalo pro rozvoj vědění a techniky její osvožení zásadní obtíže. Nicméně bylo možné se opakovaně přesvědčit, že určité odlišnosti jsou výrazné a ve kombinaci se specifickými podmínkami konkrétního projektu mohou představovat složitý problém. V některých případech bylo nutno vynaložit při zdolávání těchto překážek značné úsilí a někdy bylo nutno nabídnout atypické řešení, které bylo neobvyklé jak pro projektanta, tak investora stavby.

Je zajímavé sledovat, jak se využívání prakticky stejné metody a přístupu investora, projektantů a technického dozoru u specifických operací v jednotlivých regionech vzájemně odlišují. Technologickým lidrem je bezesporu Nor- sko, které díky geografickému říciu a ekonomické soběstačnosti realizuje každý rok desítky nových podzemních stav.- v. V Norsku jsou útváry standardy, které jsou s kraftními či dalšími časovými rozestupu postupně přejímány do ostatních severních zemí. Na Islandu jsou standardy velmi ochotně přebírány, kdežto Finsko postupuje svoji vlastní cestou.

Dobrým příkladem je rozdílný přístup k výstavbě, ve finále „stejného“ ostění v Norsku a ve Finsku. Zatímco u norských lze otevřít maximálně tři záběry bez_SEU betonu na strop a přístup tunelů z důvodu bezpečnosti práce, ve finském se není přiblížit s betoní ostění blíže než 40 m od čela. Prezentovaným důvodem je namáhání ostění účinky trhacích prací. Stropy tunelů v blízkosti čeleb jsou tak opakovaně stroj- ně a zejména ručně obtrhávány. V případě zastihnutí značné porušení horniny lze samozřejmě aplikovat bezpečnostní nástřik drátkobetony, nicméně musí dojít k souhlasu technického dozorovatele investora a projektanta pro každý záběr. Obdobně je i přístup ke svorníkové výztuži. Norské a potažmo i islandské tunely jsou svorníkovány naholde se zohledněním aktuální geotechnické situace, ve Finsku jsou svorníky definitivního ostění osazovány striktně systematicky do vypjekovávaného rastra zohledňujícího různé třídy horniny.

Takovýchto rozdílů je mnoho a každý projekt má svá ojedině- ná specifika i v rámci jedného regionu. Otevřenost investo- ra a projektanta na Islandu k technickým inovacím se výrazně odlišuje od finského konzervativního přístupu, kdy je nutné nejprve ukázat, že tudy „cesta nevede“.

POZNATKY ZE STEJNELOX NA SEVERU

Severské země obecně jsou ekonomicky velmi vyspělé s velkým důrazem na sociální ochranu jednotlivce. Mají

DRILL&BLAST METHOD SPECIFIC FEATURES IN PRACTICE

All of the above-mentioned tunnels were driven using the DRILL&BLAST method, which uses to a maximum extent the self-supporting capacity of rock mass. It finds its application first and foremost in very hard rock types existing in Nors countries; it is today very well known to our professional public. It is characterised, among other things, by the significant length of individual excavation rounds, exceeding 5m in favourable conditions, excavated by means of blasting. The lining is formed by a combination of various types of rock bolt support and sprayed concrete. The method of systematic grouting around the completed excavation (pre-grouting) has been abundantly applied.

With respect to the fact that the majority of the elements of this method are common or similar to the NATM, adopting this method posed no fundamental problem for Metrostav’s miners and technicians. Nevertheless, they had the opportunity to repeatedly convince themselves that certain differences are significant and, in combination with specific conditions of a particular project, can represent a complicated problem. It was necessary in some cases to make huge efforts when these obstacles were being overcome and an atypical solution, which was unusual for both the designer and the project owner, had to be offered.

It is interesting to watch how the application of practically identical methods and the attitudes of designers and technical supervisors differ in specific operations from each other in individual regions. Norway is undoubtedly the technological leader. Owing to the geographic relief, it realises tens of new underground structures every year. The standards which are established in Norway are sooner or later gradually taken over in other Nors countries. The standards are willingly taken over in Iceland, whilst Finland proceeds in its own way.

The different attitude to the construction of a lining which is in the end “identical” in Norway and Finland is a good example. Whilst it is possible to excavate three rounds without the application of shotcrete to the crown and top heading of tunnels as a maximum, for the reasons of the working safety, it is not allowed to install a concrete lining closer to the excavation face than 40m in Finland. The presented reason lies in the stress the lining is subjected to during blasting operations. Loose blocks of rock in the crown are repeatedly removed to a certain distance from the headings mechanically and, in particular, by hand. Nevertheless, the approval of client’s technical supervision and the designer has to be granted for each excavation round. The approach to the rockbolt support is similar. Norwegian and, as a matter of fact, Icelandic tunnels are provided with rock bolt support randomly, taking into consideration the current geotechnical situation. In Finland, rock bolts supporting the final lining are installed strictly systematically, to a grid designed taking into consideration various excavation classes.

There are many differences there and each design has its isolated specifics even within the framework of a single region. Project owner’s openness to technical innovations in Iceland substantially differs from the Finnish conservative approach, where it is first necessary to prove that “this way is not the way”.

KNOWLEDGE FROM THE CONSTRUCTION INDUSTRY IN THE NORTH

Norwegian countries are highly developed in terms of economy, emphasising the protection of an individual. They have
propracované metodiky zaměstnávání, poměrně složité daňo-
vé systémy a silné odborové organizace. V případě dodávk
stavy musí generální zhotovitel nad rámec samotné stavby
umět pracovat nejen se všemi zákony a předpisy, ale hlavně
ské také s místními zvyklostmi. Pojmy jako plánování, přespis,
etočenost při jednání nejsou pouhými frázemi. Velmi důležit-
tá je flexibilita a umění dodržet jednání. Obecně je třeba
vyzdvihnutí striktní, ale korektní přístup investorů a jejich
zástopců.

Jazyková vyspělost sevěraných je velmi vysoká, s angličtinou
se lze obejít prakticky kdekoli, přesto veškerá oficiální
komunikace probíhá v národních jazycích. Technické normy
a předpisy jsou většinou národní, publikované samozřejmě
pouze v příslušném a cizincům obtížně citelném jazyce. Svá
úkoly má také uznávání certifikátů z jiných akreditovaných
laboratoří a zkušebních ústavů než národních. Osobní
a profesní kvalifikace jsou v dětvě většině nepřenositelné.

Všechny tyto a mnoho dalších skutečností vyžadují spoluprá
a na projektích se společnými místními partnery a
konzultantskými společnostmi.

Zajímavou novinkou bylo seznámení se se systémem hod
nocení kvality, BOZP, ochrany životního prostředí a jeho
smluvní uplatňováním. Propracované klasifikace umožn
vala zadavateli ukládat sankce, ale na druhou stranu
i odmítávat za dobré výsledky. Tento princip je často uplat
ován již při výběrovém řízení na dodavatele, kdy součásti
hodnocení nabídky je velká váha kladená na kvalitu předlože
né dokumentace spolu s profesní historií uchazeče.

ZÁVĚR

Začátky severské mise Metrostavu byly velmi obtížné,
kdy se pracovníci setkávali s novými přístupy k tune
lárskému řemeslu, ale hlavně se učili pracovat v drsném
a vzdáleném prostředí. Na zmiňovaných projektech se poda
šlo úspěšně se adaptovat na místní podmínky a zvyklosti
a vybudoval si tak postupně u investora pozici respektova
ného dodavatele. Tuto zpětnou vazbu Metrostav obdržel ze
strany zástupců investora při opakovaných realizacích jak
ve Finsku, tak na Islandu.

Podalší se tak určit kontinuitu podnikání, a tím i vychová specialisty na severské metody řešení. Přesto je však nutné ke každému novému projektu přistupovat s po
kore. Společnost se opakovaně přesvědčila, že každé nové
dílo projde něco nového a je potřeba problémy na místě umět
vyřešit. Připravíme budíž řázy pod mořem v Finsku nebo aktuální
,souboji" s islandskou sopečnou geologií. Vzhledem k současné situaci a ne/plánovanost projektů v české republik
lize lze spátrit v zahraničí a zjevná na severu Evropy velký
potenciál podzemních staveb. Realizace obtížných zahranič
ních projektů tak pomáhá zvýšovat kvalifikovanost techniků
a dělníků Metrostavu a tím i konkurenceschopnost společnos
tí v zahraničí.

Ing. JIŘÍ MOSLER, jiri.mosler@metrostav.cz,
Ing. VÁCLAV PAVLOVSKÝ,
vaclav.pavlovsky@metrostav.cz,
METROSTAV a.s.

Recenzovali: prof. Ing. Jiří Barták, DrSc.,
Ing. Pavel Růžička

sophisticated methodologies of employment, relatively com
plicated taxation systems and strong trade unions. In the case of
a contract for a construction, the general contractor has to
be able to work apart the construction itself not only with all
laws and regulations, but first and foremost, with local cus
toms. Such terms as planning, precision or openness during
negotiations are not mere phrases. Flexibility and the art of
meeting agreed things are very important. In general, it is
necessary to emphasise the strict and correct approach of pro
ject owners and their representatives.

The knowledge of languages in Norse countries is very high.
One can do away with English virtually anywhere. Despite this
fact, all official communications are held in the national lan
guages. Technical standards and regulations are mostly issued
by individual states, and of course published, in the respective
languages, which are difficult for Czech people to read.
Recognizing certificates issued by other accredited laboratori
es and testing institutes than national ones has also its pitfalls.
Personal and professional qualifications are overwhelmingly
non-transferable. All of these and many other facts require col
aboration on projects with reliable local partners and consul
tancy firms.

The familiarisation with the quality assessment, health and
safety at work and environmental protection systems and their
application to contracts was an interesting novelty for
Metrostav managers. The sophisticated classification system
allowed the client to impose sanctions, but on the other hand,
also to give rewards for good results. This principle is often
applied as early as the tendering process, where much weight
is put on the quality of the submitted documentation together
with the professional history of the tenderer.

CONCLUSION

The beginnings of Metrostav’s Norse mission were very dif
cult. Workers met new approaches to the tunnelling trade
and, mainly, learned to work in the harsh and remote environ
ment. On the above-mentioned projects, they successfully
managed to get adapted to local conditions and customs and
establish themselves as a respected contractor for project own
ers. Metrostav gained this feedback from representatives of
dlients during repeated realisations both in Finland and
Iceland.

In this way the continuity of enterprising was successfully
maintained and specialists in the Norse tunnelling method
were educated. Despite this fact, it is necessary to approach
each new project with humility. The company repeatedly
cived itself that each new project brings something new and
problems must be solved on the spot. Let us mention the tun
nel excavation under the sea in Finland or the current "duel"
with Icelandic volcanic geology as an example. With respect to
the current situation and the non/preparedness of projects in
the Czech Republic, we can see a great potential of under
ground construction projects abroad, first of all in the north of
Europe. In this way, the realisation of complicated foreign pro
jects helps to improve the qualification of Metrostav’s techni
cians and workers, thus even the competitiveness of the com
pany abroad.

Ing. JIŘÍ MOSLER, jiri.mosler@metrostav.cz,
Ing. VÁCLAV PAVLOVSKÝ,
vaclav.pavlovsy@metrostav.cz,
METROSTAV a.s.