BIM A INFRASTRUKTNÍ PROJEKTY

BIM AND INFRASTRUCTURAL PROJECTS

PETR TOMÁŠ, RADIM KREJCZY

ABSTRACT

Článek je věnován Building Information Modelling (BIM). Building Information Modelling neboli informační model budovy je digitální model, který reprezentuje fyzický a funkční objekt s jeho charakteristikami. Je to tedy otevřená databáze informací o objektu, která slouží v první fázi pro koordinaci jednotlivých projekcí, dále pak pro jeho realizaci, ale zároveň i pro jeho správu a údržbu. První část příspěvku je zaměřena na popis, procesy projektování, výstavbu a správu majetku. Ve druhé části jsou představeny příklady zpracování konkrétních staveb s využitím vybraných procesů a technologií BIM. Jedná se o zahraniční projekty, kde metodika BIM je hojně využívána a v některých státech již zákonem vyžadována.

DEFINE BIM

„Technologií podporované procesy, které spravují, doplňují, upravují a sdílí informace o objektu během celého jeho životního cyklu.“ [1]

„BIM je organizovaný přístup ke sboru a využití informací napříč projektem. Ve středu tohoto leží digitální model obsahující grafické a popisné informace o návrhu, výstavbě a správě objektů.“ [2]

ABSTRACT

The paper is dedicated to the Building Information Modelling (BIM). The Building Information Modelling is a digital model representing a physical and functional building with its characteristics. It is therefore an open database of information about a building/structure, serving for the coordination of individual professions during the course of the initial phase and, subsequently, for the building/structure realization and administration and maintenance. The first part of the paper is focused on the description, designing processes, construction and property management. Examples of the processing of individual buildings/structures using selected BIM processes and technologies are presented in the second part. Foreign projects, where the BIM is frequently used and is already required by law in some states, are introduced there.

BIM DEFINITION

„A coordinated set of processes, supported by technology, that adds value through creating, managing and sharing the properties of an asset throughout its lifecycle.“ [1]

„The BIM is an organised approach to collecting and using information throughout a project. A digital model containing graphic and descriptive information on the design, construction and administration of buildings/structures lies in the centre of this effort.“ [2]

ÚVOD

Stavebnictví je obor, kde jsou informační technologie zaváděny jen velmi pomalu. Jednou z možností, jak zvýšit kvalitu procesu přípravy projektu, realizace stavby a správy budovy objektu, je využití Building Information Modeling. BIM (Informační modelování budov) je problematika poměrně nová, která rozlišuje BIM jako model, tedy jako formu informací, údaje a BIM jako proces, který využívá BIM model pro výsledky, shromažďování a sdílení informací. BIM model si lze představit jako informační databázi, která je ideálním případě obsahuje kompletní data od prvotního návrhu, přes výstavbu, správu budovy a případné rekonstrukce, až po její demolici včetně ekologické likvidace stavebního materiálu a uvedení staveniště do původního stavu. Do této informační databáze by měli přispívat všechni účastníci stavebního procesu. Pro dosažení maximálního efektu by aní jeden z účastníků stavebního procesu neměl odmítat používat informační model (tím se pak efektivita informačního modelování omezující, případně snižuje) a zároveň do něj přispívat svými výsledky.

To ale nemusí znamenat, že do modelu všichni vkládají všechny své vědomosti a data. V každém případě by však měli sdílet informace, které jsou užitečné pro ostatní účastníky procesu návrhu stavby. Výhodou tohoto principu spolupráce je přístup k informacím pro všechny účastníky, aniž by došlo ke ztrátě dat. Základním nástrojem pro BIM je 3D model. Avšak je třeba si uvědomit, že samotný 3D model není informační model budovy, ale je pouze jedním z nástrojů, jak jednotlivé informace zobrazovat. Grafické informace totiž nemusí zajišťovat všechny účastníky stavebního procesu. Například rozpočtu si data z informačního modelu budovy raději načte do tabulkového procesoru, investora pak bude zajišťovat nejen architektonické zobrazení projektu, ale i celkové náklady na výstavbu, harmonogram výstavby.
připadně různé analýzy za účelem snížení spotřeby energie, zjištění a porovnání nákladů investičních a provozních (životnost, náklady na výměnu) apod.

Proto lze jenom používat, že BIM je 3D model rozšířený o další parametry. Čtvrty parametr (4D) reprezentuje časově závislosti. tzv. harmonogram výstavby, 5D pak představuje výkaz výměr, náklady a ceny. Analýzy zaměřené na udržitelný rozvoj lze vyjadřit 6D, 7D jest tak určen pro správcu a majitele dané stavby a obsahuje konkrétní informace o parametrech objektu s ohledem na jejich provoz a údržbu. Souborné využití výše uvedených parametrů lze používat za BIM procesu. Další důležitou výhodou při použití informačního modelování je koordinace mezi jednotlivými profesemi tak, aby případné kolize, které se v návrhu mohou objevit, byly odhaleny a eliminovány již v době příprav a ne až během samotné výstavby.

Toto je jedním z velkých přínosů použití BIM technologie oproti běžnému způsobu práce, kde je taková koordinace mnohdy velmi komplikovaná.

Metodika BIM je již také zakotvena v ISO normách. Tento ISO standard je přejatý i v ČSN normách. Oto se zasoulíza zejména spočtu buildingSMART International (bSi), která zpracovává jednotlivé podklady a normy pro vypracování těchto norm. S tím souvisí i podíl OpenBIM, což je iniciativa organizace bSi a několika předních dodavatelů softwaru podporujících otevřený buildingSMART datový model (IFC), normy ISO a další aktivity buildingSMART.

Hlavním cílem OpenBIM je tedy univerzální přístup zefektivňující spolupráci při projektování, realizaci a provozu staveb a je založen na otevřených standardech a pracovních postupech.

V České republice se zavádí BIM do praxe a legislativy věnuje mj. odborná rada pro BIM – czBIM, pod jejíž hlavičkou vznikl i první dokument seznamující širokou veřejnost se základními principy BIM [3] a úvod tohoto článu z této publikace čerpá.

Jak bylo naznačeno, nespornou výhodou BIM je vyšší stupeň přípravy stavby, který se odraží na průběhu stavby samotné i na nižších

Graf 1: Efekt nákladů v různých fázích projektu

Graph 1: The effect of costs in various project phases

- **1. schopnost ovlivnit náklady (ability to influence costs)**
- **2. náklady na změnu projektu (design change costs)**
- **3. náklady při práci s BIM (costs when the BIM is used)**
- **4. náklady při klasickej projektování (costs in the case of classical designing)**

čas / time
náklaďech na výstavbu a zejména pak při následné údržbě. Během přípravy stavby bude možné kalkulovat s náklady nejen investičními, ale i dalšími, vznikajícími během celého života objektu. Graf 1 ukazuje jefekt náklaďů v různých fázích projektu. Modrá linka (1) vytváří klesající schopnost ovlivní náklady na stavbu a její výkonnost po všech stránkách. Červená linka (2) zobrazuje stoupající náklady na provádění jakýchkoliv změn v návrhu v pozdějších fázích projektu. Zelená linka (3) pak ukazuje pracovní postup s využitím BIM a černá linka (4) vyjadřuje náklady při využití klasického pracovního postupu (postup zaměřen na kresbu dokumentace).

Z grafu tedy vyplývá, že při využití metodiky BIM je provedena větší změna v počáteční fázi návrhu, kdy jsou náklady na tyto změny ještě malé, a není složitě ovlivněna výslednou kvalitou návrhu stavby. Zatímco při klasickém způsobu projektování jsou tyto změny realizovány v pozdější fázi dokumentace, kdy již provádění jakýchkoliv změn je poměrně komplikované a nákladné.

Níže bude uvedeno několik projektů, kde je metodika BIM je zakotvena a použita.

SHATIN TO CENTRAL LINK, HONGKONG

Shatin to Central Link (SCL) je nově plánovaná linka metra v délce 17 km spojující čtvrť Shatin s centrem Hongkongu. Nová linka bude sloužit jako klíčové klíčové hudební místo, které vytvoří v stávajících dva strategické koridory (severo-jižní a východo-západní). Navíc vznikne nové spojení do části, které zde jsou nejlépe pokryty kolejovou dopravou. Součástí této stavby je 1,4 km dlouhý plavený tunel pod závalem propojující pevninu a ostrov Hongkong (obr. 1).

Předvě na této části projektu se podílela společnost Mott MacDonald – plavý tunel s propojením do stávajících části metra na pobřeží. Prášinská pobočka navrhovála konstrukce pázení štětovnicových jímek a děrcových pracovních ploch na severním břehu v městské části nazývané se Hung Hom (obr. 2). Konstrukce pázení byly tvořeny ocelovými plochami a děrceními spojenými zámkem beráněnými do mořského dna. Děrcové pracovní plochy byly využívány pro obsluhu stavební jámy i bunku děrceného ocelového různého pokrytí betonovým povrchem. Stávající konstrukce používají betonový povrchem a ocelové jámy. Vrchní stávající konstrukce používají děrcení a vrchní stávající konstrukce používají děrcení.

DOHA METRO, KATAR

Mott MacDonald právě tuto stanici projektuje. Stanice je kompletně zpracovávána metodikou BIM. Znamená to komplexní 3D model, kontrolu detekce v rámci projektu (mezi konstrukční části, TIB a architektury), výkazy výměr č. harmonogramy výstavby. Zajišťovat je, že probíhající konstrukce nejen v rámci stanice, ale i se současně projekovanými objekty. Jedná se to Msheireb Downtown Area, komerční a řešení zástavby, a Ashghal Road Tunnel (obr. 3). Šťápyrový silniční tunel. Oba tyto objekty jsou situovány nad objektem křížení kolejí (cross-over), který je součástí stanice. Další stanice je stanice Education City na zelené linka (obr. 4). Tato stanice je součástí železniční transe. Pro obě tyto stanice je zhotovitelné sdružení stavebních firm Samsung, OHL a Qatar Building Company. Hlavním investorem je Qatar Railways Company, ten i předal jednačasně požadavky na informace, které bude BIM model obsahovat (7D). Tyto

Obr. 1 Celkový pohled na tunel – BIM model

Fig. 1 Overall view of the tunnel – the BIM model

As hinted above, an undisputable advantage of the BIM lies in a higher degree of construction planning, which reflects itself in the course of the construction itself and in lower costs of construction, in particular during the subsequent maintenance. It will be possible during the project planning to take into account not only investment costs but also other costs originating during the whole project life. The Graph 1 shows the effect of costs in various project phases. The blue line (1) expresses the decreasing ability to influence the costs of the project and its efficiency in all aspects. The red line (2) depicts the increasing cost of the execution of any project change during subsequent project phases. The green line (3) shows the working procedure using the BIM, whilst the black line (4) expresses the costs incurred when the classical working process is used (the process of focusing on the drawing of documents).

It follows from the graph that when the BIM methodology is applied the majority of changes is carried out in the initial design phase, in which the costs of these changes are still small and it is not difficult to influence the resultant quality of the construction design. When a classical design process is used, these changes are realised in the later phase of documentation, when the execution of any change is relatively complicated and expensive.

Several projects which BIM methodology is incorporated into and is applied will be presented below.

SHATIN TO CENTRAL LINK, HONGKONG

Shatin to Central Link (SCL) is a new 17km long metro line connecting the Shatin district with Hong Kong downtown. The new line will become a key element of the Hong Kong rail network, which will create two strategic corridors (north-south bound and east-west bound) on the existing network. In addition, a new link to parts which have not been covered by rail-bound transport till now will originate. A 1.4km long immersed tunnel under the bay, connecting the continent and Hong Kong Island, is part of the project.

It is this part of the project that Mott MacDonald participated in – the immersed tunnel with a connection to existing parts of the metro system on the coast. The Prague branch designed the bracing structures of sheetpile cofferdams and temporary working platforms on the northern coast in the Hung Hom city district. The bracing structures consisted of interlocked steel plates driven into the sea bottom. The temporary working platforms will be used for servicing the construction pit and will also be formed by plates driven into the bottom, with steel grating covered with concrete surface on their tops. The existing structure of a post building and a city bypass road viaduct created limiting conditions in terms of logistics. Other complications were posed by variable geological conditions in the locality. The BIM process was applied to all of the above aspects for the optimisation of the solutions. Collisions between structures were solved, geological profiles in the locality were comfortably verified and.
at last but not least, the bill of quantities was checked deriving all its benefits (see Figures 1 and 2).

DOHA METRO, QUATAR

Doha, the Qatar capital, passes through great industrial development. One of the sectors where the great development is underway is the metro network. No metro line is in service at the moment. However, the following 4 lines should be in operation: the Red Line, Gold Line, Green Line and Blue Line. The total length should amount to 169 km, with 80 km of that length in the underground. Up to 73 metro stations are assumed to be on individual lines. Msheireb Station will be the central station serving as a key node on the Green, Red and Golden Lines.

The above-mentioned station is being designed by Mott MacDonald. The station is completely worked on using the BIM methodology. It means a comprehensive 3D model, checking on detections within the framework of professions (between the structural part, building equipment and architects), bills of quantities or construction programmes. An interesting fact is that coordination exists not only within the framework of the station, but even regarding structures being currently under design, namely the Msheireb Downtown Area, commercial and residential development projects and the Asghal Road Tunnel (see Fig 3) and a four-lane road tunnel. Both these tunnel structures are located above a rail cross-over which is part of the station. Education City on the Green Line is another station (see Fig. 4). This station will be linked to a railway station. The contractor for the two stations is the consortium consisting of Samsung, OHL and Qatar Building Company. The main client is Qatar Railways Company. The client handed over unambiguous requirements for information which the BIM model will contain (7D). This information will subsequently allow for simpler administration and maintenance of individual stations.

BERGEN LIGHT RAIL, NORWAY

Mott MacDonald is at the moment finishing the work on the design for a tramway track in the city of Bergen, Norway. The double-track line running from the downtown to the airport is about 7 km long. The part under design covers a wide range of professions associated with a project with such the extent. Among them there are in particular the signalling, traction, track bed and trackwork, geotechnical structures, drainage, sewerage, heavy current and weak current networks and fire safety elements. There are 8 stops, 11 bridges, 5 tunnels (both mined and cut-and-cover), a depot for rail-bound vehicles, a multi-storey car parking facility, etc. on the line.

The entire design has been carried out using the BIM methodology and, owing to this fact, several offices could participate in the work on it all over Europe. It means that individual designers for particular parts are allowed access to one central digital model, which they
informace budou pak sloužit k jednodušší správě a údržbě jednotlivých stanic.

BERGEN LIGHT RAIL, NORSKO

Mott MacDonald aktuálně dokončuje práce na projektu tramvajové tratě ve městě Bergen v Norsku. Dvoukolejná tratě je vedena z centra města na letiště a dlouhá je asi 7 km. Projektovaná část zahrnuje široké spektrum profesí týkajících se projektu tohoto rozsahu. Jedná se zejména o signalizaci, trakce, železniční spodě a světlo, geotechnické objekty, drenáže, kanalizace, silnoproudé i slaboproudé elektrické sítě a požární bezpečnostní prvky. Na trase je třeba 8 zastávek, 11 mostů, 5 tunelů (ražených i hloubených), depo kolejových vozidel, vícepatrové parkoviště apod.

Celý projekt je zpracován metodíkou BIM a díky tomu se také na projektu mohlo podílet několik kanceláří po celé Evropě. Znamená to, že jednotlivé projekty danými části mají přístup do centrálního digitálního modelu, do kterého také přispívají svými částmi. Správce modelu pak jednotlivé části kontroluje a provádí případné detekce kolizí. Po vyhodnocení jsou dotčené osoby informovány. Aby nedocházelo k neoprávněným změnám, jsou jednotlivými uživateli v rámci datového úložiště upravena uživatelská práva. Model je také využíván pro ocenění stavby na základě jasně stanovených specifikací a k tvorbě harmonogramů v rámci jednotlivých částí stavby.

Jedním ze zajišťovacích objektů na trase je architektonicky pojatý tramvajový most s chodníkem pro pěší. Most je betonový (předpjetý) zavěšený na ocelovém oblouku, který diagonálně překračuje jak silniční, also contribute their parts to. The model administrator checks on the individual parts and carries out contingent corrections of collisions. After the assessment, affected persons are informed. User rights of individual users are modified within the data repository so that unauthorised changes are prevented. The model is in addition used for the project evaluation on the basis of unambiguously set specifications and for the development of programmes within the framework of individual parts of the project.

The architecturally conceived tramway bridge with a pedestrian walkway belongs among interesting structures. It is a pre-stressed concrete structure suspended from a steel arch, which diagonally crosses over a road and the tramway track, thus always forming an entrance gate for passengers travelling on the road or by tram from the airport (see Fig. 5).

Another interesting structure on the route is the Sətəmırıkulpərtən cut-and-cover tunnel (see Fig. 6).

BAKU METRO, AZERBAIJAN

The Prague-based branch of Mott MacDonald, jointly with French Systra and South Korean Saman are designing a metro in Baku, the capital of Azerbaijan. The Purple Line, which is currently under construction, will link “Avtovozgal”, the largest bus terminal for intercity buses at the north-western edge of the city with its centre and further with the eastern outskirts of the city. In total, the project comprises
tak tramvajovou trať a tvoří tak pro cestujícího po silnici nebo tramvají od lotůžky vždy vstupstí bránu (obr. 5).

Dalším zajímavým objektem na trase je hloubený tunel Sáamyrikuverken (obr. 6).

Baku Metro, Azerbajdžán

Právě na technologické objekty ventilačních šacht byl aplikován BIM v rozsahu kontroly kolíži jednotlivých vedení v šachtě, výkazů výměr a celkové koordinace mezi vlastním objektem a šachtou (obr. 7).

ZÁVĚR

Za zkratkou BIM lze tedy najít komplexní proces výměny a sdílení informací a koordinací profesí. Využitím informačního modelování lze dosáhnout výšší úroveň právě objektu, který je významný pro výstavbu a především pro výstavbu, kdy je možné dosáhnout její výšní úroveň. Využití procesu BIM se do budoucna jeví jako nezbytně nutné pro stavby větších účelů. Proto, aby se BIM stál součástí přípravy staveb, je dále důležité připravit právní prostředí a zavést jednotlivé metody, které by měly jednoznačně určit pravidla pro BIM.

Lze předpokládat, že investice do projektu (dokumentace) se časem zvyší. Zároveň se bude dostaženo nižších nákladů při výstavbě a správě staveb. Výsledná úspora tedy bude mnohonásobně vyšší než počítané náklady na projekt.

Recenzovali: Ing. arch. Petr Vaněk, Ing. Martin Černý, Ph.D.

LITERATURA / REFERENCES

[1] SHENNAN, R. Mott MacDonald BIM manual, Mott MacDonald 2012